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Regression Models

X Yf

Conceptually, a regression model is a mapping f from a set
X ⊆ Rd of data instances to a set Y ⊆ R of outcomes.
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Regression Models: Illustration

ID
Age
Gender
Income
Job Type
Collateral
Loan Type
Credit History
Debt-to-Income
Loan Amount
Funding Period
. . .

50 %

0 %

100 %

f

Loan Eligibility
Each instance is a list of attributes about an applicant. The objective is
to predict the applicant’s likelihood of repaying the loan.

3 / 31



Regression Models: Interpretability

Loan =
Personal?

Age ≤ 50?

. . . . . .

Loan Amount
< 1 Me?

Score = 3
5

Debt-to-
Income < 1.5?

Score = 1
5

. . .

yes no

yes no yes no

yes no

Although some regression models are interpretable . . .
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Most of them are not!
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Explaining Regressors

x f y

Why y is the outcome of x?

Thus, a key issue is to provide answers to why-questions.
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Explaining Regressors

x f y

e

An explanation for an instance x with respect to a prediction
model f is an interpretable surrogate model e that is consistent
with f at x .

6 / 31



Explaining Regressors: Setting

Black-Box Model
Any regression model f is viewed as a black box, with only access
to the outcome of any queried instance.

Main Assumption [Ribeiro et al., 2016]

The input space X is a Boolean hypercube, where each dimension
is interpretable.

In other words, each instance is a vector x ∈ {±1}d , where
[d ] = {1, · · · , d} is a set of interpretable features*.

*Data instances over raw attributes are first transformed into Boolean
vectors, using discretization techniques or interpretable latent spaces.
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Explaining Regressors: Illustration

. . .

Age ≤ 25 -1

25 < Age ≤ 50 +1

Age > 50 -1

Gender = m +1

Gender = f -1

Debt-to-Income ≤ 1 -1

Debt-to-Income > 1 +1

Loan ≤ 10 Ke -1

10 Ke< Loan ≤ 100 Ke -1

Loan > 100 Ke +1
. . .

20 %

f

Using a set of interpretable features, let us explain why our applicant is
not eligible for a loan . . .

8 / 31



Explaining Regressors: Illustration

. . .

0 Age ≤ 25 -1

1/2 25 < Age ≤ 50 +1

0 Age > 50 -1

0 Gender = m +1

0 Gender = f -1

0 Debt-to-Income ≤ 1 -1

−1/10 Debt-to-Income > 1 +1

0 Loan ≤ 10 Ke -1

0 10 Ke< Loan ≤ 100 Ke -1

−1/5 Loan > 100 Ke +1

. . .

20 %

fw

A clear way to explain the outcome of an instance is to identify a sparse
vector of weights w .

9 / 31



Explaining Regressors: Illustration

1
2 [25 < Age ≤ 50] − 1

10 [DTI > 1] − 1
5 [Loan > 100 Ke] −→ Score = 1

5

This vector w can be seen as a weighted decision rule, where the head is
determined by the sum of activated weights.

The explanation model e is therefore given by:

e(z) = w · z for all z ∈ {±1}d
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What is a Good Explanation?

Two Main Criteria [Molnar, 2025]:

Conciseness
Is the explanation short enough to be understandable?

=⇒ Measured using ∥w∥0, which is the number of nonzero weights of w .

Precision
Does the explanation predict the outcome as truthfully as possible?

=⇒ An explanation w is sufficient if w · z = w · x implies f (z) = f (x)
for all z ∈ {±1}d .

Unfortunately, both criteria are clashing: sufficient explanations
may require too many weights to be understandable!
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Probabilistic Explanations

Definition

Given a probability distribution D over {±1}d , the precision
error of an explanation w for x is defined as

Ez∼D[|f (z)− f (x)| | w · z = w · x ]

In other words, the error of w is the expected gap between f (z)
and f (x), when the projections of z and x to w are the same.
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Computing Probabilistic Explanations

Given

• a black-box model f ,

• an instance x to explain,

• a probability distribution D over instances,

• a conciseness parameter k ,

our problem is to

Minimize Ez∼D[|f (z)− f (x)| | w · z = w · x ]

Subject to w · x = f (x)

∥w∥0 ≤ k
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Consistency Constraint

Conciseness Constraint
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Computing Probabilistic Explanations

Computational Complexity

The problem of finding an explanation w of size at most k and
precision error at most ε is NPPP-hard.

Thus, the problem involves two independent sources of complexity:

• Evaluating the precision error of a given vector w is PP-hard,

• Finding a vector w of size at most k that achieves minimal
precision error is NP-hard.
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Optimizing Precision

Consider again our optimization problem:

Minimize Ez∼D[|f (z)− f (x)| | w · z = w · x ]

Subject to w · x = f (x)

∥w∥0 ≤ k

P(w)

The objective function P(w) involves a conditional expectation, which is
very difficult to evaluate.
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Optimizing Fidelity

Now, consider the following variant:

Minimize Ez∼D[(w · z − f (z))2]

Subject to w · x = f (x)

∥w∥0 ≤ k

F (w)

By substituting the precision error P(w) with fidelity error F (w) [Ribeiro
et al., 2016], the objective function is an unconditional expectation that
can be approximated through sampling.
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Optimizing Empirical Fidelity

Finally, given a sample set {(z1, f (z1)), · · · , (zm, f (zm))} drawn from the
distribution D and labeled by the predictor f , consider the problem:

Minimize 1
m

∑m
i=1(w · zi − f (zi ))2

Subject to w · x = f (x)

∥w∥0 ≤ k

F̂ (w)

By approximating the fidelity F (w) through empirical fidelity F̂ (w), the
objective function is now easy to evaluate.

19 / 31



Optimizing Empirical Fidelity

Approximation Guarantees

Let w∗ be an optimal explanation for the precision. Then, using a
number of samples m that is logarithmic in d and quadratic in k ,
any explanation w that is optimal for the empirical fidelity satisfies
with high probability:

P(w) ≤
√
F̂ (w∗) + o(1)

Computing probabilistic explanations of optimal empirical fidelity can be
solved via Mixed Integer Programming.
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Optimizing Empirical Fidelity Remains Hard

Even with approximation guarantees, the final problem:

Minimize 1
m

∑m
i=1(w · zi − f (zi ))2

Subject to w · x = f (x)

∥w∥0 ≤ k Conciseness Constraint

is still NP-hard because the conciseness constraint is not convex!

=⇒ We thus need additional assumptions to achieve polynomial-time
efficiency.
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Uniform Distribution

Concentration Inequality [Achlioptas, 2001]

Let D be the uniform distribution over {±1}d . Then, for any
w ∈ Rd and any ε ∈ (0, 1), we have

PZ∼Dm

[∣∣ 1
m∥Zw∥22 − ∥w∥22

∣∣ > ε
]
≤ 2e−Ω(m)

Thus, if the number of samples m is sufficiently large, any matrix
Z ∼ Dm satisfies, with high probability, the Restricted Isometry
Property for all k-sparse vectors w [Baraniuk et al., 2008]:

(1− βk)∥w∥22 ≤ 1
m∥Zw∥22 ≤ (1 + βk)∥w∥22
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Iterative Hard Thresholding

Input Query (x , f (x)), sparsity level k, samples (Z , y)

Initialize w0 = 0

For each t = 1, 2, . . . do

vt = wt−1 − 1
mZ⊺(Zwt−1 − y)

wt = argminw∈W ∥vt − w∥2

Gradient Descent

Projection onto feasible explanations

W = {w ∈ Rd : w · x = f (x) and ∥w∥0 ≤ k}
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Optimizing Empirical Fidelity under Uniform Distribution

Efficiency Guarantees

Let w∗ be an optimal explanation for the precision. Then, using a
polynomial number of samples drawn uniformly at random, the IHT
algorithm is guaranteed to find, with high probability, a k-sparse
explanation wt that achieves

P(wt) ≤ 7

√
F̂ (w∗) + o(1)

Furthermore, wt can be computed in polynomial time with respect
to d , k , and log2⌈1/F̂ (w∗)⌉.
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Setup

Benchmarks

• Prediction Tasks: 20 regression datasets from OpenML

• Black-box f : neural networks (MLP) learned from train set

• Instance x : selected uniformly at random from the test set

• Distributions: D parameterized by spread σ ∈ [0, 1]

• Explanation Sizes: k ∈ {1, · · · , 10}
• Number of samples: m = 1000

• Timeout: 60 seconds

Competitors

• IHT, MIP (Gurobi solver) versus CVX (convex relaxation), LIME, and
MAPLE.
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Results

Benchmark Empirical Fidelity

Name CVX IHT LIME MAPLE MIP

Airfoil Self Noise 0.040 0.055 0.321 0.218 0.049
Auto MPG 0.031 0.069 0.338 0.122 0.039
Liver Disorders 0.059 0.091 0.209 0.147 0.068
Medical Charges 0.040 0.049 0.408 0.204 0.049

Ailerons 0.050 0.201 0.647 0.113 0.085
Auto Imports 0.067 0.232 0.528 0.148 0.107
DNA Methylation 0.121 0.192 0.582 0.168 0.191
NCI 60 Thioguanine 0.062 0.235 0.534 0.108 0.132
Student Performance 0.074 0.143 0.454 0.169 0.105
Wave Energy 0.017 0.080 0.301 0.128 0.091

Results on 4 low-dimensional benchmarks and 6 medium-dimensional
benchmarks, using k = 7, m = 1000, and σ = 1. Entries highlighted in
green indicate that all generated explanations were k-sparse.
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Comparisons among IHT, Lime and MIP for several parameters.
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Conclusion

• Probabilistic explanations achieve a balance between conciseness
and precision.

• However, computing these explanations is very challenging
(NPPP-hard).

• By replacing precision with fidelity, they can be approached with
Mixed Integer Programming, while offering approximation
guarantees.

• Under the uniform distribution, these explanations can be efficiently
approached using Iterative Hard Thresholding.

• Empirical results on real-world benchmarks support our theoretical
findings.

Thank you for your attention!
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