Probabilistic Explanations for Regression Models

Frederic Koriche, Jean-Marie Lagniez, and Chi Tran

uai2025 — Rio de Janeiro, Brazil — 21-25 July, 2025

Univ. Artois, Centre de Recherche en Informatique de Lens (CRIL) AI Chair EXPEKCTATION of the French Agency of National Research

1 Regression Models

- 2 Probabilistic Explanations
- 3 Dealing with PP-Hardness
- 4 Dealing with NP-Hardness
- 5 Experiments

Conceptually, a regression model is a mapping f from a set $\mathcal{X} \subseteq \mathbb{R}^d$ of *data instances* to a set $\mathcal{Y} \subseteq \mathbb{R}$ of *outcomes*.

Regression Models: Illustration

Loan Eligibility

Each instance is a list of attributes about an applicant. The objective is to predict the applicant's likelihood of repaying the loan.

Regression Models: Interpretability

Although some regression models are interpretable

Regression Models: Interpretability

Most of them are **not**!

Explaining Regressors

Why y is the outcome of x?

Thus, a key issue is to provide answers to why-questions.

Explaining Regressors

An explanation for an instance x with respect to a prediction model f is an interpretable surrogate model e that is consistent with f at x.

Black-Box Model

Any regression model f is viewed as a black box, with only access to the outcome of any queried instance.

Black-Box Model

Any regression model f is viewed as a black box, with only access to the outcome of any queried instance.

Main Assumption [Ribeiro et al., 2016]

The input space $\ensuremath{\mathcal{X}}$ is a Boolean hypercube, where each dimension is interpretable.

In other words, each instance is a vector $\mathbf{x} \in \{\pm 1\}^d$, where $[d] = \{1, \dots, d\}$ is a set of interpretable features*.

*Data instances over raw attributes are first transformed into Boolean vectors, using discretization techniques or interpretable latent spaces.

Explaining Regressors: Illustration

Using a set of interpretable features, let us explain why our applicant is not eligible for a loan \ldots

Explaining Regressors: Illustration

A clear way to explain the outcome of an instance is to identify a sparse vector of weights \boldsymbol{w} .

Explaining Regressors: Illustration

$$\frac{1}{2} \; [25 < \mathsf{Age} \le 50] \; -\frac{1}{10} \; [\mathsf{DTI} > 1] \; -\frac{1}{5} \; [\mathsf{Loan} > 100 \; \mathsf{K} \textcircled{e}] \longrightarrow \mathsf{Score} = \frac{1}{5}$$

This vector \boldsymbol{w} can be seen as a weighted decision rule, where the head is determined by the sum of activated weights.

The explanation model *e* is therefore given by:

$$e(\boldsymbol{z}) = \boldsymbol{w} \cdot \boldsymbol{z}$$
 for all $\boldsymbol{z} \in \{\pm 1\}^d$

1 Regression Models

- 2 Probabilistic Explanations
- 3 Dealing with PP-Hardness
- 4 Dealing with NP-Hardness
- 5 Experiments

Two Main Criteria [Molnar, 2025]:

Conciseness

Is the explanation short enough to be understandable?

 \Longrightarrow Measured using $\| \boldsymbol{w} \|_0$, which is the number of nonzero weights of $\boldsymbol{w}.$

Two Main Criteria [Molnar, 2025]:

Conciseness

Is the explanation short enough to be understandable?

 \implies Measured using $\| \boldsymbol{w} \|_0$, which is the number of nonzero weights of \boldsymbol{w} .

Precision

Does the explanation predict the outcome as truthfully as possible? \implies An explanation w is *sufficient* if $w \cdot z = w \cdot x$ implies f(z) = f(x)for all $z \in \{\pm 1\}^d$. Two Main Criteria [Molnar, 2025]:

Conciseness

Is the explanation short enough to be understandable?

 \implies Measured using $\|\boldsymbol{w}\|_0$, which is the number of nonzero weights of \boldsymbol{w} .

Precision

Does the explanation predict the outcome as truthfully as possible? \implies An explanation w is *sufficient* if $w \cdot z = w \cdot x$ implies f(z) = f(x)for all $z \in \{\pm 1\}^d$.

Unfortunately, both criteria are clashing: sufficient explanations may require too many weights to be understandable!

Definition

Given a probability distribution \mathcal{D} over $\{\pm 1\}^d$, the precision error of an explanation \boldsymbol{w} for \boldsymbol{x} is defined as

$$\mathbb{E}_{\boldsymbol{z}\sim\mathcal{D}}[|f(\boldsymbol{z})-f(\boldsymbol{x})| \mid \boldsymbol{w}\cdot\boldsymbol{z}=\boldsymbol{w}\cdot\boldsymbol{x}]$$

In other words, the error of w is the expected gap between f(z) and f(x), when the projections of z and x to w are the same.

Given

- a black-box model f,
- an instance x to explain,
- a probability distribution ${\mathcal D}$ over instances,
- a conciseness parameter k,

our problem is to

$$\begin{array}{ll} \text{Minimize} & \mathbb{E}_{\boldsymbol{z}\sim\mathcal{D}}[|f(\boldsymbol{z}) - f(\boldsymbol{x})| \mid \boldsymbol{w} \cdot \boldsymbol{z} = \boldsymbol{w} \cdot \boldsymbol{x}] \\ \\ \text{Subject to} & \boldsymbol{w} \cdot \boldsymbol{x} = f(\boldsymbol{x}) \\ & \|\boldsymbol{w}\|_0 \leq k \end{array}$$

Computing Probabilistic Explanations

Given

- a black-box model f,
- an instance x to explain,
- a probability distribution $\mathcal D$ over instances,
- a conciseness parameter k,

our problem is to

Computing Probabilistic Explanations

Given

- a black-box model f,
- an instance x to explain,
- a probability distribution ${\mathcal D}$ over instances,
- a conciseness parameter k,

our problem is to

Computational Complexity

The problem of finding an explanation \boldsymbol{w} of size at most k and precision error at most ε is NP^{PP}-hard.

Thus, the problem involves two independent sources of complexity:

- Evaluating the precision error of a given vector \boldsymbol{w} is PP-hard,
- Finding a vector **w** of size at most k that achieves minimal precision error is NP-hard.

1 Regression Models

2 Probabilistic Explanations

3 Dealing with PP-Hardness

4 Dealing with NP-Hardness

5 Experiments

Consider again our optimization problem:

The objective function P(w) involves a conditional expectation, which is very difficult to evaluate.

Now, consider the following variant:

Minimize $\mathbb{E}_{z \sim \mathcal{D}}[(\boldsymbol{w} \cdot \boldsymbol{z} - f(\boldsymbol{z}))^2]$ $F(\boldsymbol{w})$ Subject to $\boldsymbol{w} \cdot \boldsymbol{x} = f(\boldsymbol{x})$ $\|\boldsymbol{w}\|_0 \leq k$

By substituting the precision error P(w) with fidelity error F(w) [Ribeiro et al., 2016], the objective function is an unconditional expectation that can be approximated through sampling.

Finally, given a sample set $\{(z_1, f(z_1)), \dots, (z_m, f(z_m))\}$ drawn from the distribution \mathcal{D} and labeled by the predictor f, consider the problem:

Minimize
$$\frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{w} \cdot \boldsymbol{z}_i - f(\boldsymbol{z}_i))^2$$
 $\hat{F}(\boldsymbol{w})$ Subject to $\boldsymbol{w} \cdot \boldsymbol{x} = f(\boldsymbol{x})$ $\|\boldsymbol{w}\|_0 \leq k$

By approximating the fidelity F(w) through empirical fidelity $\hat{F}(w)$, the objective function is now easy to evaluate.

Approximation Guarantees

Let w^* be an optimal explanation for the precision. Then, using a number of samples *m* that is logarithmic in *d* and quadratic in *k*, any explanation w that is optimal for the empirical fidelity satisfies with high probability:

$$P(oldsymbol{w}) \leq \sqrt{\hat{F}(oldsymbol{w}^*)} + o(1)$$

Approximation Guarantees

Let w^* be an optimal explanation for the precision. Then, using a number of samples *m* that is logarithmic in *d* and quadratic in *k*, any explanation w that is optimal for the empirical fidelity satisfies with high probability:

$$P(oldsymbol{w}) \leq \sqrt{\hat{F}(oldsymbol{w}^*)} + o(1)$$

Computing probabilistic explanations of optimal empirical fidelity can be solved via Mixed Integer Programming.

1 Regression Models

- 2 Probabilistic Explanations
- 3 Dealing with PP-Hardness
- 4 Dealing with NP-Hardness

5 Experiments

Even with approximation guarantees, the final problem:

is still NP-hard because the conciseness constraint is not convex!

Even with approximation guarantees, the final problem:

is still NP-hard because the conciseness constraint is not convex!

 \Longrightarrow We thus need additional assumptions to achieve polynomial-time efficiency.

Concentration Inequality [Achlioptas, 2001]

Let \mathcal{D} be the uniform distribution over $\{\pm 1\}^d$. Then, for any $\boldsymbol{w} \in \mathbb{R}^d$ and any $\varepsilon \in (0, 1)$, we have

$$\mathbb{P}_{\boldsymbol{Z}\sim\mathcal{D}^m}\left[\left|\frac{1}{m}\|\boldsymbol{Z}\boldsymbol{w}\|_2^2-\|\boldsymbol{w}\|_2^2\right|>\varepsilon\right]\leq 2e^{-\Omega(m)}$$

Concentration Inequality [Achlioptas, 2001]

Let \mathcal{D} be the uniform distribution over $\{\pm 1\}^d$. Then, for any $\boldsymbol{w} \in \mathbb{R}^d$ and any $\varepsilon \in (0, 1)$, we have

$$\mathbb{P}_{\boldsymbol{Z}\sim\mathcal{D}^m}\left[\left|\frac{1}{m}\|\boldsymbol{Z}\boldsymbol{w}\|_2^2-\|\boldsymbol{w}\|_2^2\right]>\varepsilon\right]\leq 2e^{-\Omega(m)}$$

Thus, if the number of samples m is sufficiently large, any matrix $\mathbf{Z} \sim \mathcal{D}^m$ satisfies, with high probability, the Restricted Isometry Property for all k-sparse vectors \mathbf{w} [Baraniuk et al., 2008]:

$$(1 - \beta_k) \| \boldsymbol{w} \|_2^2 \le \frac{1}{m} \| \boldsymbol{Z} \boldsymbol{w} \|_2^2 \le (1 + \beta_k) \| \boldsymbol{w} \|_2^2$$

Input Query
$$(\mathbf{x}, f(\mathbf{x}))$$
, sparsity level k, samples (\mathbf{Z}, \mathbf{y})

Initialize
$$\boldsymbol{w}_0 = 0$$

For each $t = 1, 2, ...$ do
 $\boldsymbol{v}_t = \boldsymbol{w}_{t-1} - \frac{1}{m} \boldsymbol{Z}^{\mathsf{T}} (\boldsymbol{Z} \boldsymbol{w}_{t-1} - \boldsymbol{y})$ Gradient Descent
 $\boldsymbol{w}_t = \operatorname{argmin}_{\boldsymbol{w} \in \mathcal{W}} \|\boldsymbol{v}_t - \boldsymbol{w}\|_2$

Projection onto feasible explanations

$$\mathcal{W} = \{ \boldsymbol{w} \in \mathbb{R}^d : \boldsymbol{w} \cdot \boldsymbol{x} = f(\boldsymbol{x}) \text{ and } \| \boldsymbol{w} \|_0 \leq k \}$$

Efficiency Guarantees

Let w^* be an optimal explanation for the precision. Then, using a polynomial number of samples drawn uniformly at random, the IHT algorithm is guaranteed to find, with high probability, a *k*-sparse explanation w_t that achieves

$$P(\boldsymbol{w}_t) \leq 7\sqrt{\hat{F}(\boldsymbol{w}^*)} + o(1)$$

Furthermore, \boldsymbol{w}_t can be computed in polynomial time with respect to d, k, and $\log_2[1/\hat{F}(\boldsymbol{w}^*)]$.

1 Regression Models

- 2 Probabilistic Explanations
- 3 Dealing with PP-Hardness
- 4 Dealing with NP-Hardness

5 Experiments

Setup

Benchmarks

- Prediction Tasks: 20 regression datasets from OpenML
- Black-box f: neural networks (MLP) learned from train set
- Instance x: selected uniformly at random from the test set
- Distributions: \mathcal{D} parameterized by spread $\sigma \in [0,1]$
- Explanation Sizes: $k \in \{1, \cdots, 10\}$
- Number of samples: m = 1000
- Timeout: 60 seconds

Competitors

• IHT, MIP (Gurobi solver) versus CVX (convex relaxation), LIME, and MAPLE.

Results

Benchmark	Empirical Fidelity				
Name	CVX	IHT	LIME	MAPLE	MIP
Airfoil Self Noise	0.040	0.055	0.321	0.218	0.049
Auto MPG	0.031	0.069	0.338	0.122	0.039
Liver Disorders	0.059	0.091	0.209	0.147	0.068
Medical Charges	0.040	0.049	0.408	0.204	0.049
Ailerons	0.050	0.201	0.647	0.113	0.085
Auto Imports	0.067	0.232	0.528	0.148	0.107
DNA Methylation	0.121	0.192	0.582	0.168	0.191
NCI 60 Thioguanine	0.062	0.235	0.534	0.108	0.132
Student Performance	0.074	0.143	0.454	0.169	0.105
Wave Energy	0.017	0.080	0.301	0.128	0.091

Results on 4 low-dimensional benchmarks and 6 medium-dimensional benchmarks, using k = 7, m = 1000, and $\sigma = 1$. Entries highlighted in green indicate that all generated explanations were k-sparse.

Increasing Explanation Sizes k

Comparisons among IHT, Lime and MIP for several parameters.

- Probabilistic explanations achieve a balance between *conciseness* and *precision*.
- However, computing these explanations is very challenging $(NP^{PP}-hard)$.
- By replacing precision with fidelity, they can be approached with Mixed Integer Programming, while offering approximation guarantees.
- Under the uniform distribution, these explanations can be efficiently approached using Iterative Hard Thresholding.
- Empirical results on real-world benchmarks support our theoretical findings.

- Probabilistic explanations achieve a balance between *conciseness* and *precision*.
- However, computing these explanations is very challenging (NP $^{\rm PP}\text{-hard}).$
- By replacing precision with fidelity, they can be approached with Mixed Integer Programming, while offering approximation guarantees.
- Under the uniform distribution, these explanations can be efficiently approached using Iterative Hard Thresholding.
- Empirical results on real-world benchmarks support our theoretical findings.

Thank you for your attention!

- Dimitris Achlioptas. Database-friendly random projections. In *Proceedings of the 20th ACM Symposium on Principles of Database Systems (PODS)*, page 274–281, 2001.
- Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael Wakin. A simple proof of the restricted isometry property for random matrices. *Constructive Approximation*, 28:253–263, 2008.
- Christoph Molnar. Interpretable Machine Learning. leanpub.com, 3rd edition, 2025. URL https://christophm.github.io/interpretable-ml-book.
- Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust you?": Explaining the predictions of any classifier. In *Proceedings of the* 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1135–1144, 2016.